

An Economical and SLO-Guaranteed Cloud Storage Service across Multiple Cloud Service Providers Guoxin Liu and Haiying Shen Presenter: Haiying Shen Associate professor

Department of Electrical and Computer Engineering, Clemson University, Clemson, USA

- Introduction
- Related work
- Problem Statement
- Economical and SLO-guaranteed Service
- Evaluation
- Conclusion

Geo-Distributed Storage over CSPs

Use different CSPs

- Objective: minimize payment cost
- Non-trivial

Geo-Distributed Storage over CSPs

- Cloud service broker
 - Collects resource usage requirements from customers
 - Generates data allocation over multiple clouds
 - Data storage and Get request allocation
- Reduce cost by leveraging different pricing policies
 - Different cloud providers, different datacenters of a cloud provider
 - Tiered pricing
 - Location of the destination datacenter
 - Pay-as-you-go price > reservation price
- Problem:
 - Input: customer data and request rates
 - Output: data storage & request allocation and resource reservation

- Introduction
- Related work
- Problem Statement
- Economical and SLO-guaranteed Service
- Evaluation
- Conclusion

Related Work

- ervices over multiple clouds La a a voility, data retrieval latency
- Cloud/datacentec harse payment cost n viza: jon
 - Adaptively a gr data with different stars ifferent storage ser est for storage

Pricing models on clouds

Transic pricing models

Adaptive ean cartions

Model concave g

Jd Service SLO guarante

larante throughput

Caching and scheduling

SLO Guaranteed with Cost Minimization

- ES³: Economical and SLO-guaranteed cloud Storage Service
 - Geographically distributed cloud storage service for multiple customers over multiple clouds with SLO guarantee and cost minimization

- Introduction
- Related work
- Problem Statement
- Economical and SLO-guaranteed Service
- Evaluation
- Conclusion

Data Allocation and Resource Reservation

- Payment minimization objective
 - Get/Put: Minimize cost under both pay-as-you-go and reservation
 - Storage/Transfer: Minimize pay-as-you-go under tiered pricing model
- Constraints
 - Ensure Get/Put SLO for each tenant
 - Ensure data availability (maintain replicas over datacenters)
 - Avoid data congestion of a single datacenter
- NP-Hard

- Introduction
- Related work
- Problem Statement
- Economical and SLO-guaranteed Service
- Evaluation
- Conclusion

Economical and SLO-guaranteed Cloud Storage Service

- Cost minimization with SLO guarantee under payas-you-go model & reservation benefit maximization
 - Coordinated data allocation and reservation
- Cost minimization under reservation
 - GA-based data allocation adjustment
- Dynamic Get rate variation
 - Dynamic request redirection

Coordinated Data Allocation and Resource Reservation

- **A**={A1,A2,....An} as a list of the number of Gets in different t_k in T sorted in an increasing order
- Rule 1: Among several datacenter candidates to allocate a data item, we need to choose the datacenter that leads to the largest A1 increment after being allocated with the data item
- The optimal reservation is the Ai in A that generates the largest reservation benefit

Data Allocation and Reservation

- Dominant cost
 - Cost >> sum of all other costs
- Intensive data
 - Storage/Get/Put intensive (storage/Get/Put cost domination)
 - Existence of high domination ratio
 - Storage intensive: Old webpages/photos/videos
 - Put intensive: Replicas for data availability
 - Get intensive: New popular news/photos/videos

Data Allocation and Reservation

- SLO guarantee
 - Latency and capacity aware cloud service selection
- Cost efficiency
 - Get/Put intensive data
 - Minimum unit price & follow Rule 1 7
 - Storage isen if a DULL
 - Minimum unit price and maximum aggregation size

GA-based Data Allocation

- Genetic algorithm (GA): mimics the process of natural selection
 - Gene: Data allocation of a data item
 - Crossover: Between global-optimal and sub-optimals
 - Mutation: Approach to global optimal

Dynamic Request Redirection

- Observation: Get rate variation
- Solution
 - Data availability: Multiple replicas
 - Saturation datacenter

 Starvation datacenter
 - Saturation: Usage over reservation
 - Starvation: Usage under reservation

- Introduction
- Related work
- Problem Statement
- Economical and SLO-guaranteed Service
- Evaluation
- Conclusion

Evaluation of ES³

- Simulated CSPs: 25 regions
 - Amazon S3, Microsoft Azure, and Google cloud storage
- Simulated customers
 - 52 Cloud customers
- Real deployment
 - One customer: Amazon EC2 US East & West regions
- Comparison
 - COPS [9]: shortest latency
 - SPANStore [10]: latency guaranteed and unit cost minimization
 - Cheapest: Unit cost minimization
 - Random: Random CSP region selection

^[9] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Dont Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS. In Proc. of SOSP, 2011.

^[10] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha. SPANStore: Cost-Eective Geo-Replicated Storage Spanning Multiple Cloud Services. In Proc. of SOSP, 2013.

Evaluation (cont.)

- Effect of ES³
 - Due to capacity and latency awareness
 - ES³ supplies get-SLO and put-SLO guaranteed service
 - Due to the comprehensive pricing policy awareness
 - ES³ generates the minimum payment cost to CSPs

- Introduction
- Related work
- Problem Statement
- Economical and SLO-guaranteed Service
- Evaluation
- Conclusion

Conclusion

- Multi-cloud Economical and SLOguaranteed cloud Storage Service (ES3)
 - Coordinated data allocation and reservation
 - GA-based data allocation adjustment
 - Dynamic request redirection
 - Effectiveness:
 - Minimize payment cost and achieve the SLO of each tenant
 - Future wok:
 - Dynamically create and delete data replicas in datacenters to fully utilize the Put reservation

Thank you! Questions & Comments?

Haiying Shen, Associated Professor shenh@clemson.edu Pervasive Communication Laboratory Clemson University